Problem 1.64

In case you're not persuaded that $\nabla^{2}(1 / r)=-4 \pi \delta^{3}(\mathbf{r})$ (Eq. 1.102, with $\mathbf{r}^{\prime}=\mathbf{0}$ for simplicity), try replacing r by $\sqrt{r^{2}+\epsilon^{2}}$, and watching what happens as $\epsilon \rightarrow 0 .{ }^{16}$ Specifically, let

$$
D(r, \epsilon) \equiv-\frac{1}{4 \pi} \nabla^{2} \frac{1}{\sqrt{r^{2}+\epsilon^{2}}} .
$$

To demonstrate that this goes to $\delta^{3}(\mathbf{r})$ as $\epsilon \rightarrow 0$:
(a) show that $D(r, \epsilon)=\left(3 \epsilon^{2} / 4 \pi\right)\left(r^{2}+\epsilon^{2}\right)^{-5 / 2}$;
(b) check that $D(0, \epsilon) \rightarrow \infty$, as $\epsilon \rightarrow 0$;
(c) check that $D(r, \epsilon) \rightarrow 0$, as $\epsilon \rightarrow 0$, for all $r \neq 0$;
(d) check that the integral of $D(r, \epsilon)$ over all space is 1 .

Solution

By definition, the delta function $\delta^{3}(\mathbf{r})$ satisfies the following two properties.

$$
\begin{aligned}
& \text { (1) } \delta^{3}(\mathbf{r})= \begin{cases}0 & \text { if }|\mathbf{r}| \neq 0 \\
\infty & \text { if }|\mathbf{r}|=0\end{cases} \\
& \text { (2) } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta^{3}(\mathbf{r}) d \mathbf{r}=1
\end{aligned}
$$

The aim in this problem is to show that $D(r, \epsilon)$ satisfies these two properties as $\epsilon \rightarrow 0$. Start by simplifying $D(r, \epsilon)$.

$$
\begin{aligned}
D(r, \epsilon) & =-\frac{1}{4 \pi} \nabla^{2} \frac{1}{\sqrt{r^{2}+\epsilon^{2}}} \\
& =-\frac{1}{4 \pi}\{\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial}{\partial r}\left(\frac{1}{\sqrt{r^{2}+\epsilon^{2}}}\right)\right]+\frac{1}{r^{2} \sin \theta} \overbrace{\frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial}{\partial \theta}\left(\frac{1}{\sqrt{r^{2}+\epsilon^{2}}}\right)\right]}^{=0} \\
& +\frac{1}{r^{2} \sin ^{2} \theta} \underbrace{\frac{\partial^{2}}{\partial \phi^{2}}\left(\frac{1}{\sqrt{r^{2}+\epsilon^{2}}}\right)}_{=0}\} \\
& =-\frac{1}{4 \pi r^{2}} \frac{d}{d r}\left\{r^{2}\left[-\frac{r}{\left(r^{2}+\epsilon^{2}\right)^{3 / 2}}\right]\right\} \\
& =-\frac{1}{4 \pi r^{2}} \frac{d}{d r}\left[-\frac{r^{3}}{\left(r^{2}+\epsilon^{2}\right)^{3 / 2}}\right] \\
& =-\frac{1}{4 \pi r^{2}}\left[-\frac{3 \epsilon^{2} r^{2}}{\left(r^{2}+\epsilon^{2}\right)^{5 / 2}}\right] \\
& =\frac{3 \epsilon^{2}}{4 \pi\left(r^{2}+\epsilon^{2}\right)^{5 / 2}}
\end{aligned}
$$

[^0]Check that $D(r, \epsilon)$ satisfies property (1) in the limit as $\epsilon \rightarrow 0$.

$$
\begin{array}{ll}
r=0: & \lim _{\epsilon \rightarrow 0} D(0, \epsilon)=\lim _{\epsilon \rightarrow 0} \frac{3 \epsilon^{2}}{4 \pi\left(\epsilon^{2}\right)^{5 / 2}}=\lim _{\epsilon \rightarrow 0} \frac{3 \epsilon^{2}}{4 \pi \epsilon^{5}}=\lim _{\epsilon \rightarrow 0} \frac{3}{4 \pi \epsilon^{3}}=\infty \\
r \neq 0: & \lim _{\epsilon \rightarrow 0} D(r, \epsilon)=\lim _{\epsilon \rightarrow 0} \frac{3 \epsilon^{2}}{4 \pi\left(r^{2}+\epsilon^{2}\right)^{5 / 2}}=\frac{3(0)^{2}}{4 \pi\left(r^{2}\right)^{5 / 2}}=\frac{0}{4 \pi r^{5}}=0
\end{array}
$$

Check that $D(r, \epsilon)$ satisfies property (2).

$$
\begin{aligned}
\iiint_{\text {all space }} D(r, \epsilon) d V & =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{3 \epsilon^{2}}{4 \pi\left(r^{2}+\epsilon^{2}\right)^{5 / 2}}\left(r^{2} \sin \theta d r d \phi d \theta\right) \\
& =\frac{3 \epsilon^{2}}{4 \pi}\left(\int_{0}^{\pi} \sin \theta d \theta\right)\left(\int_{0}^{2 \pi} d \phi\right)\left[\int_{0}^{\infty} \frac{r^{2} d r}{\left(r^{2}+\epsilon^{2}\right)^{5 / 2}}\right]
\end{aligned}
$$

Make a trigonometric substitution.

$$
\begin{aligned}
r & =\epsilon \tan \theta \quad \rightarrow \quad r^{2}+\epsilon^{2}=\epsilon^{2}\left(1+\tan ^{2} \theta\right)=\epsilon^{2} \sec ^{2} \theta \\
d r & =\epsilon \sec ^{2} \theta d \theta
\end{aligned}
$$

As a result,

$$
\begin{aligned}
\iiint_{\text {all space }} D(r, \epsilon) d V & =\frac{3 \epsilon^{2}}{4 \pi}(2)(2 \pi) \int_{0}^{\pi / 2} \frac{(\epsilon \tan \theta)^{2}\left(\epsilon \sec ^{2} \theta d \theta\right)}{\left(\epsilon^{2} \sec ^{2} \theta\right)^{5 / 2}} \\
& =3 \epsilon^{2} \int_{0}^{\pi / 2} \frac{\left(\epsilon^{2} \tan ^{2} \theta\right)\left(\epsilon \sec ^{2} \theta d \theta\right)}{\epsilon^{5} \sec ^{5} \theta} \\
& =3 \int_{0}^{\pi / 2} \tan ^{2} \theta \cos ^{3} \theta d \theta \\
& =3 \int_{0}^{\pi / 2} \sin ^{2} \theta \cos \theta d \theta \\
& =3 \int_{0}^{\pi / 2} \sin ^{2} \theta d(\sin \theta) \\
& =\left.3 \frac{\sin ^{3} \theta}{3}\right|_{0} ^{\pi / 2} \\
& =\sin ^{3} \frac{\pi}{2}-\sin ^{3} 0 \\
& =1-0 \\
& =1 .
\end{aligned}
$$

[^0]: ${ }^{16}$ This problem was suggested by Frederick Strauch.

